# Carbonic Acid and Its Mono- and Diprotonation: NMR, ab Initio, and IGLO Investigation<sup>1</sup>

## Golam Rasul, V. Prakash Reddy, Leszek Z. Zdunek, G. K. Surya Prakash,\* and G. A. Olah\*

Contribution from the Donald P. and Katherine B. Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, California 90089-1661. Received September 25, 1992

Abstract: The structures and <sup>13</sup>C NMR chemical shifts of carbonic acid and its mono- and diprotonated forms were calculated using ab initio and IGLO methods, respectively. The results were compared with the experimentally obtained NMR data under superacidic conditions.

### Introduction

Carbonic acid is of special importance in nature. The equilibrium of carbonic acid with carbon dioxide and water and its significance are well recognized and thoroughly studied. Despite

$$H_2O + CO_2 \rightleftharpoons H_2CO_3$$

carbonates being the abundant minerals on earth, carbonic acid is difficult to observe spectroscopically in its free form. Carbonic acid is known to be present to the extent of about 0.4% in water containing dissolved CO<sub>2</sub>. The dissociation constant of carbonic acid is large in comparison with those of the hydrates of other carbonyl compounds,<sup>2</sup> and this has been taken to reflect the high stability of the unhydrated species,  $CO_2$ . However, an activation energy of 16.5 kcal/mol<sup>3</sup> for the dissociation reaction of carbonic acid to water and carbon dioxide suggests that it should be possible to observe carbonic acid in its free state. The theoretically calculated activation barrier for the dissociation reaction is 15.5 kcal/mol at the HF/3-21G level.<sup>4</sup> Indeed, there have been two claims of the preparation of carbonic acid<sup>5,6</sup> as its ether complex, but no spectral evidence was provided.

Isolation of the carbonic acid as its ether complex<sup>6</sup> was achieved by the addition of an ethereal solution of anhydrous HCl to a suspension of finely divided sodium bicarbonate in ether at -30°C. Cooling the solution to -78 °C resulted in the precipitation of crystals of  $H_2CO_3$ ·Et<sub>2</sub>O. A similar procedure was used by Gattow and Gerwath in their preparation of the dimethyl ether complex of carbonic acid using<sup>5</sup> dimethyl ether and sodium carbonate at -35 °C. They obtained a solid (mp -47 °C) which decomposed violently above 5 °C, yielding water, CO<sub>2</sub>, and ether, in the ratio 1:1.02:1.02, respectively. The authors concluded that the solid was  $OC(OH)_2 \cdot O(CH_1)_2$  although NMR and IR spectra were not obtained.

Several calculations on the gas-phase reaction of carbon dioxide with water and with hydroxide ion have been reported,7 focusing mainly on accurate reaction energies. Liang and Lipscomb<sup>7a</sup> obtained 61 kcal/mol free energy barriers for the former reaction at the MP2/4- $31^{**}$ //4-31G level.

Protonated carbonic acid in superacidic media is remarkably stable, as shown by Olah and White.<sup>8</sup> It can be obtained by simply dissolving carbonates or hydrogen carbonates in FSO<sub>3</sub>H-

- (5) Gallow, G.; Gerwath, U. Angew. Chem. 1965, 77, 132.
  (6) Galmos, A. G.; Carotti, A. A. J. Am. Chem. Soc. 1961, 83, 752.
  (7) (a) Liang, J.-Y.; Lipscomb, W. N. J. Am. Chem. Soc. 1986, 108, 5051.

(b) Jonsson, B.; Karlstrom, G.; Wennerstrom, H.; Forsen, S.; Roos, B.; Almlof, J. J. Am. Chem. Soc. 1977, 99, 4628. (c) Jonsson, B.; Karlstrom, G.; Wennerstrom, H. J. Am. Chem. Soc. 1978, 100, 1658.
 (8) Olah, G. A.; White, A. M. J. Am. Chem. Soc. 1968, 90, 1884.

SbF<sub>5</sub> (or other superacids). <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy was used to characterize  $H_3CO_3^+$ . The solutions decompose at about 0 °C to give hydronium ion and carbon dioxide.

$$\begin{array}{c} \text{CO}_3^{2*} & \frac{\text{FSO}_3\text{H}\cdot\text{SbF}_6/\text{SO}_2}{\text{or HCO}_3} & \text{H}_3\text{CO}_3^+ & \frac{\cdot10\cdot0^\circ\text{C}}{\text{CO}_2} + \text{H}_3\text{O}^+ \end{array}$$

The close analogy of protonated carbonic acid with the guanidinium ion best explains its stability. Both are highly resonance stabilized. The observation of stable protonated carbonic acid

$$H_2CO_3 \xrightarrow{H^*} HO$$
  $C \xrightarrow{OH} H^*O$   $OH$   $H^*O$   $OH$   $etc. or C^* OH$   $OH$   $OH$ 

has led Olah<sup>8</sup> to suggest that protonated carbonic acid may also play a role in certain biological carboxylation processes.

We wish to report now the extended <sup>13</sup>C NMR, ab initio, and IGLO studies on carbonic acid itself, as well as its mono- and diprotonated forms.

#### **Results and Discussion**

The solubility of BaCO<sub>3</sub> is very low in SO<sub>2</sub>ClF, and the addition of HBr gave neither  $CO_2$  nor any detectable carbonates in solution (by <sup>13</sup>C NMR using 53% <sup>13</sup>C-enriched BaCO<sub>3</sub>). However, when a few drops of methanol or water were added followed by acids such as HBr or CF<sub>3</sub>CO<sub>2</sub>H, a carbon resonance at  $\sim \delta(^{13}C)$  163 was observed. With weaker acids such as HCOOH or CH<sub>3</sub>CO-OH, only  $CO_2$  (dissolved) could be observed.

Dimethyl carbonate (53% <sup>13</sup>C enriched) and di-tert-butyl carbonate were also examined. Di-tert-butyl carbonate readily protolyses in HBr-SO<sub>2</sub>ClF, while dimethyl carbonate does not. We also attempted to study the existence of  $H_2CO_3$ -ether complexes in the BaCO<sub>3</sub>-HCl-ether systems.

From Table I it can be seen that the range of chemical shifts observed is narrow (although conditions were not always strictly identical) and the chemical shifts observed showed no systematic variation with the acids used. The cleavage of di-tert-butyl carbonate gives the same species as  $BaCO_3$  does, with a similar chemical shift.

Dimethyl ether itself shows no significant chemical shift change  $(\sim 0.3 \text{ ppm})$  at -40 °C when excess HCl is added. Since HCl boils at -85 °C, clearly a complex must be formed, but it seems to be very loosely bound or still rapidly proton exchanging (no static  $(CH_3)_2OH^+$  is observed). There appears to be no NMR evidence for any  $H_2CO_3$ -dimethyl ether complex. However, the addition of BaCO<sub>1</sub> to a solution of HCl in CH<sub>1</sub>OH gives a peak at  $\delta(^{13}C)$  162.9, which shows very little change upon addition of H<sub>2</sub>O. It appears unlikely that a complex such as  $H_2CO_3 \cdot O(Me)_2$ is formed in the presence of the relatively strong acid HCl. The peak at  $\delta(^{13}C)$  162.9 in a solution of BaCO<sub>3</sub> in CH<sub>3</sub>OH with excess HCl in all probability is due to  $H_2CO_3$ . Dimethyl carbonate is not formed under the conditions, but an exchanging system of  $H_2CO_3$  with methyl hydrogen carbonate is plausible.

<sup>(1)</sup> Chemistry in Superacids. 12. Part 11: Olah, G. A. Angew. Chem., in press.

Beil, R. P. Adv. Phys. Org. Chem. 1966, 4, 11.
 Roughton, F. W. J. J. Am. Chem. Soc. 1941, 63, 2930.
 Nguyen, M. T.; Ha, T.-K. J. Am. Chem. Soc. 1984, 106, 599.

| Table I. Measured <sup>13</sup> C NMR Chemical Sh |
|---------------------------------------------------|
|---------------------------------------------------|

| carbonate                         | temp<br>(°C) | acid                                      | solvent             | solubilizer                         | $\delta(^{13}C)$ (C=O<br>or C=OH <sup>+</sup> ) |
|-----------------------------------|--------------|-------------------------------------------|---------------------|-------------------------------------|-------------------------------------------------|
| BaCO <sub>3</sub>                 | -90          | FSO <sub>3</sub> H-SbF <sub>5</sub> (1:4) | SO <sub>2</sub> ClF | _                                   | 164.9                                           |
| BaCO                              | -82          | HBr                                       | SO <sub>2</sub> CIF | CH OH                               | 163.1                                           |
| BaCO                              | -80          | CF <sub>3</sub> COOH                      | SO <sub>2</sub> CIF | _                                   | 163.0                                           |
| BaCO                              | -40          | HCI                                       | CH <sub>3</sub> OH  | -                                   | 162.9                                           |
| BaCO                              | -40          | HCI                                       | CH,OCH,             | CH <sub>3</sub> OH                  | 162.4                                           |
| BaCO <sub>3</sub>                 | -40          | HCI                                       | CH,OCH,             | CH <sub>3</sub> OH/H <sub>2</sub> O | 162.5                                           |
| BaCO                              | -40          | HCI                                       | CH,OH               |                                     | 162.9                                           |
| $(t \cdot Bu)_{2}CO_{3}$          | -78          | -                                         | SO <sub>2</sub> CIF | -                                   | 147.5                                           |
| $(t-Bu)_2CO_3$                    | -78          | HBr                                       | SOCIF               | CH 3OH                              | 162.4                                           |
| $(Me),CO_3$                       | -78          |                                           | SO <sub>2</sub> CIF | _                                   | 157.1                                           |
| (Me),CO                           | -78          | HBr                                       | SO <sub>2</sub> CIF | -                                   | 163.2                                           |
| (Me) <sub>2</sub> CO <sub>3</sub> | 78           | HBr                                       | SO <sub>2</sub> ClF | СН3ОН                               | 162.3                                           |

<sup>a</sup>Chemical shifts are referenced to external TMS; – means not added.

Table II. Total Energies (in hartrees) and Relative Energies (in kcal/mol Based on MP2/6-31G\*//HF/6-31G\* + ZPE) of Bicarbonate and Free and Mono- and Diprotonated Carbonic Acids (Zero-Point Vibrational Energy (ZPE) in kcal/mol at the HF/6-31G\*//HF/6-31G\* Level Given in Parentheses)

| structure                                    | HF/6-31G*/<br>/HF/6-31G*        | MP2/6·31G*/<br>/HF/6-31G* | rel energy<br>(kcal/mol) | MP2/6-31G*/<br>/MP2/6-31G* |
|----------------------------------------------|---------------------------------|---------------------------|--------------------------|----------------------------|
| 1                                            | -263.07861 (18.37)              | -263.732 57               |                          | -163.750 16                |
| H <sub>2</sub> CO <sub>3</sub>               |                                 |                           |                          |                            |
| 2                                            | -263.643 64 (27.07)             | -264.291 24               | 1.9                      |                            |
| 3                                            | -263.647 48 (27.27)             | -264.29462                | 0.0                      | -264.31259                 |
| 4                                            | -263.62491 (26.05)              | -264.27318                | 12.3                     |                            |
| 5                                            | -263.65018 (23.26)              | -264.30414                | -10.0                    |                            |
| 6                                            | $-263.64851(22.92)^{a}$         | -264.30248                | -9.3                     |                            |
| H <sub>1</sub> CO <sub>1</sub> <sup>+</sup>  |                                 |                           |                          |                            |
| 7                                            | -263.95546 (35.15)              | -264.593 36               | 0.0                      | -264.61084                 |
| 8                                            | $-263.90125(32.98)^{a}$         | -264,55262                | 23.4                     |                            |
| 9                                            | -263.94240 (34.85)              | -264,58077                | 7.6                      |                            |
| H <sub>4</sub> CO <sub>3</sub> <sup>2+</sup> |                                 |                           |                          |                            |
| 10                                           | -263.91329 (38.98)              | -264.56592                | 26.1                     |                            |
| 11                                           | -263.961 05 (40.29)             | -264.601 91               | 4.8                      |                            |
| 12                                           | -263.94021 (39.47) <sup>b</sup> | -264.582 50               | 16.2                     |                            |
| 13                                           | -263.970.08 (40.66)             | -264.61027                | 0.0                      | -264.628 19                |
| 14                                           | -263.952 94 (39.59)             | -264.59496                | 8.5                      |                            |
| 15                                           | -263.93712 (39.08) <sup>b</sup> | -264.581 39               | 16.5                     |                            |

<sup>a</sup> Two imaginary frequencies. <sup>b</sup> One imaginary frequency.

| Fable II | I. IGL | O Ca | lculated | <sup>13</sup> C | NMR | Chemical | Shifts |
|----------|--------|------|----------|-----------------|-----|----------|--------|
|----------|--------|------|----------|-----------------|-----|----------|--------|

| II//MP2/6-31G* | experimental                     |
|----------------|----------------------------------|
| 159.4          | 161.2ª                           |
| 158.5          | 162.9                            |
| 169.7          | 164.9                            |
| 157.8          |                                  |
|                | 159.4<br>158.5<br>169.7<br>157.8 |

<sup>&</sup>lt;sup>a</sup> From ref 17.

We also carried out ab initio and IGLO calculations<sup>9.10</sup> on bicarbonate as well as free and mono-, and diprotonated carbonic acids to rationalize the observed experimental results. Initially the possible geometries were optimized at the HF/6-31G\* level. The most stable isomers were subsequently determined from relative energies at the MP2/6-31G\*//HF/6-31G\* level. Finally, the lowest energy structures were further optimized at the MP2/6-31G\* level. MP2/6-31G\* optimized structures were used to calculate <sup>13</sup>C NMR chemical shifts. Optimized structures are depicted in Figure 1, and their calculated energies are summarized in Table II. IGLO calculated <sup>13</sup>C NMR chemical shifts are listed in Table III.

**Carbonic Acid.** The  $C_{2e}$  structure 3 is found to be the lowest energy structure. Although structures 5 and 6 are lower in energy than that of 3, those are in fact molecular complexes between  $CO_2$ and  $H_2O$  rather than de facto carbonic acid. Calculations on carbonic acid, although at low levels, have been reported previously. The obtained results<sup>4</sup> match well with those reported here.

Calculated proton affinity of carbonic acid at the MP2/6-31G\*//HF/6-31G\* level is 177.4 kcal/mol,<sup>11</sup> 10 kcal/mol greater than that of water (Experimental gas phase and calculated (at the MP2/6-31G\*//HF/6-31G\* level) proton affinities of water are  $168.1^{11}$  and  $166.5^{12}$  kcal/mol, respectively).

Protonated Carbonic Acid. The symmetrical  $C_{3h}$  structure 7 was found to be the global minimum. This structure was suggested for the observed species in superacid solution by Olah et al.<sup>8</sup> on the basis of <sup>1</sup>H and <sup>13</sup>C NMR spectroscopy. The ion at -80 °C shows single sharp peaks at  $\delta(^{1}H)$  12.05 and  $\delta(^{13}C)$  165.4 in the proton and <sup>13</sup>C NMR spectra, respectively.

Protonation of carbonic acid on the hydroxyl oxygen atom (8) was shown to be unfavorable by 23.4 kcal/mol over protonation on the carbonyl oxygen (7). Frequency calculation at the HF/ $6-31G^*//HF/6-31G^*$  level showed that the structure 8 is not a minimum, as it contains two imaginary frequencies.

**Diprotonated Carbonic Acid.** Structure 13 with  $C_{2\nu}$  symmetry is the lowest energy structure. The structure can be considered as a donor-acceptor complex of H<sub>2</sub>O and diprotonated CO<sub>2</sub>. As expected, the C—OH<sub>2</sub> bond length (1.367 Å) of diprotonated carbonic acid 13 is slightly greater than the C—OH bond length (1.339 Å) of neutral methanol whereas the C—OH bond length (1.229 Å) of 13 is between the normal C—O and C=O bond lengths, indicating the delocalization of the second charge into two C—OH oxygen atoms.

Theoretical calculations reveal the similarity of diprotonated carbonic acid with the diprotonated guanidinium dication (observed<sup>13</sup> in superacid solutions by NMR). Attempts to observe diprotonated carbonic acid in high-acidity Magic acid (FSO<sub>3</sub>H–

 <sup>(9)</sup> Schindler, M.; Kutzelnigg, W. J. Am. Chem. Soc. 1983, 105, 1360.
 (10) Schindler, M. J. Am. Chem. Soc. 1987, 109, 1020 and references cited therein.

<sup>(11)</sup> Hartz, N.; Rasul, G.; Olah, G. A. J. Am. Chem. Soc., submitted. (12) Lias, S. G.; Liebman, F. J.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695.

<sup>(13)</sup> Olah, G. A.; White, A. M. J. Am. Chem. Soc. 1968, 90, 6087.



Figure 1. HF/6-31G\* optimized structures (MP2/6-31G\* optimized).

SbF<sub>5</sub>) or fluoroantimonic acid systems were, however, unsuccessful. The <sup>13</sup>C NMR chemical shift of protonated carbonic acid hardly changed ( $\pm 0.5$  ppm) with the gradual increase in acidity. Thus any diprotonated carbonic acid formed at these acidities, albeit in low concentrations, would undergo rapid proton exchange under the slow NMR time scale and will not contribute to the observed chemical shift.

The observation that carbonic acid in superacidic media under certain circumstances can act as a carboxylating agent<sup>14</sup> is significant, as it indicates the intermediacy of protonated (or diprotonated) carbon dioxide as the reactive carboxylating agents. Alternatively, protolytic cleavage of carbonic acid which leads to carbon dioxide also suggests involvement of protonated (and diprotonated) CO<sub>2</sub>, i.e.  $(\overline{O} = C = OH)^+$  and  $(H\overline{O} = C = OH)^{2+}$ , respectively.



Using IGLO II basis set and MP2/6-31G\* structures, we have calculated <sup>13</sup>C NMR chemical shifts for the most stable structures of the parent and mono- and diprotonated carbonic acids as well as bicarbonate ion. The calculated <sup>13</sup>C NMR chemical shift of  $HCO_3^{-}(1)$  was found to be  $\delta(^{13}C)$  159.4, in good agreement with the experimental value of  $\delta(^{13}C)$  161.2 (Table III). The calculated chemical shift of protonated carbonic acid 7 is  $\delta(^{13}C)$  169.7, 5 ppm more deshielded than the experimental value of  $\delta(^{13}C)$  165.0. Calculation for carbonic acid 3 gave a value of  $\delta(^{13}C)$  158.5, 1 ppm more shielded than the calculated value of bicarbonate ion. These results seem to indicate that the <sup>13</sup>C NMR absorption at  $\delta(^{13}C)$  162.9 in a solution of BaCO<sub>3</sub> in CH<sub>3</sub>OH with excess HCl is indeed due to  $H_2CO_3$ , which may be in equilibrium with protonated carbonic acid. Interestingly, the calculated <sup>13</sup>C NMR chemical shift for diprotonated carbonic acid is  $\delta(^{13}C)$  157.8, only 11.9 ppm shielded from the calculated chemical shift of carbonic acid.

#### Experimental Section

<sup>13</sup>C NMR spectra were recorded at 20 MHz and were run with either proton decoupling (full NOE) or a gated decoupling mode which gives a fully coupled spectrum with some NOE enhancement. The chemical shifts are referenced with respect to external TMS (The difference between internal and external TMS reference is only +1 ppm in the <sup>13</sup>C NMR).

Starting Materials. SO<sub>2</sub> and SO<sub>2</sub>ClF were available as described in earlier studies. SbF<sub>5</sub> (Allied-Signal) was doubly distilled and stored in Teflon bottles. All other gases were from Air Products. The <sup>13</sup>C-enriched carbonate (53% <sup>13</sup>C barium carbonate) was obtained from Merck, Sharp and Dohme. Dialkyl carbonates were from Aldrich and were used as received.

Preparation of Solutions. The carbonate was generally added to the SO, or SO<sub>2</sub>CIF in a 10-mm NMR tube using ca. 1 mL of solvent. Into this was slowly introduced the requisite acid. In the case of FSO<sub>3</sub>H-SbF<sub>5</sub>, the carbonate was added to the acid solution. All solutions were made up and kept at -78 °C (using a dry ice-acetone bath).

Method, Basis Set, and Geometry. IGLO calculations were performed according to the reported method.<sup>9,10</sup> Huzinaga<sup>15</sup> Gaussian lobes for the II basis set are as follows: C or O, 9s 5p 1d contracted to [51111, 2111, 1]; d exponent, 1.0; H, 5s 1p contracted to [311, 1]; p exponent, 0.65. Geometries were optimized at HF/6-31G\* and MP2/6-31G\* levels

by using the Gaussian-86<sup>16</sup> series of programs on an Alliant FX/40computer. The energy minima or the saddle points were confirmed by vibrational frequency calculations at the same level.

Acknowledgment. Support of our work by the National Institute of Health is gratefully acknowledged. We are grateful to professor W. Kutzelnigg and Dr. M. Schindler for providing a copy of their IGLO program.

<sup>(14)</sup> Olah, G. A.; White, A. M. J. Am. Chem. Soc. 1968, 90, 1884. (15) Huzinaga, S. Approximate Atomic Wave Function; University of Alberta: Edmonton, Alberta, 1971.

<sup>Alberta: Edmonton, Alberta, 1971.
(16) Frisch, M. J.; Binkley, J. S.; Schlegel, H. B.; Raghavachari, K.;
Melius, C. F.; Martin, R. L.; Steward, J. J. P.; Bobrowicz, F. W.; Rohlfing,
C. M.; Kahn, L. R.; Defrees, D. J.; Seeger, R.; Whiteside, R. A.; Fox, D. J.;
Fleuder, E. M.; Pople, J. A.</sup> *Gaussian-86*; Carnegie-Mellon Quantum Chemistry Publishing Unit: Pittsburgh, PA, 1984.
(17) Patterson, A., Jr.; Ettinger, R. Z. Elektrochem. 1960, 64, 98.